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Figure 4.  

 

 
 



50 

 

 

APPENDIX A: PARTURITION DETECTION ALGORITHM 

 

I developed a cluster detection algorithm using the adehabitatHR package (Calenge 2006) in 

Program R (R Core Team 2018) to determine parturition dates of female Sierra Bighorn sheep 

from 2008-2018. I developed input criteria for the algorithm using GPS locations and vaginal 

implant transmitters (VITs; (DeMars et al. 2013, McGraw et al. 2014, McClintock et al. 2012, 

2014, Blackwell et al. 2016). I included a sub-sample of adult females (n=22) fitted with high 

fix-rate GPS collars and VITs during spring captures. Once a VIT was expelled, I visually 

verified the birth event and monitored the movement patterns of females and offspring. I then 

calculated the average time spent in a parturition site, and the average distance traveled from the 

location the VIT was expelled.  

I found females spent on average (χ̅  = 26, SE= 4) hours in a parturition site and remained 

within an average of ( χ̅  19m, SE= 11m) from the site until departing. I used these parameters to 

predict independent visually-verified parturition sites for females with variable fix-rate GPS 

collars that did not receive VITS (n=21). I tested for false positives (clustered GPS locations that 

are not the result of parturition) using GPS data from females that were not pregnant. I found 

these methods of parturition detection correctly identified all independently verified parturition 

sites and did not result in any false positives (no potential clusters were identified) for females 

that were not pregnant.  

I determined potential parturition dates for the remaining sample of females (n= 80) using 

the range of times and distances estimated from the VIT females (Figure 1). I used three criteria 

to externally evaluate whether clusters identified by the algorithm could be considered 

parturition sites. First, each cluster must have included locations during daylight hours when a 

sheep would normally be expected to exhibit foraging behavior (approximately 07:00am to 
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6:00pm). Second, each cluster must have been preceded by movement greater than the average 

daily movement for that female, a long-distance movement from winter range, or movement 

away from other collared females. Finally, I cross-referenced visual observations of females to 

be sure that no offspring were observed with a female prior to the predicted cluster date. In some 

cases, I was also able to confirm a lamb had been observed after the predicted parturition date; 

however, due to potential offspring mortality, this was not a required criteria. I found no 

discrepancies between visual observations and predicted parturition dates. In addition to these 

criteria, I also mapped predicted cluster locations and checked local weather conditions to reduce 

uncertainty. If there were sequential clusters that fit the aforementioned criteria, the earliest date 

was selected because Sierra bighorn are known to remain localized in a parturition site then 

make a small movement to a nursery site (Figure A1).  
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R code: Cluster Detection Algorithm 

Install packages and set working directory and other preferenes. 

install.packages("fpc", dependencies = TRUE, repos = "http://cran.us.r-proje
ct.org") 

library(adehabitatHR)           # Load package 

library(RODBC) 
library(gtools) 

library(fpc) 
 
setwd("C:/Users/SForshee/Desktop/Lambing_Clusters") # Redefine directory  
#rm(list=(ls()))                        # clears memory by deleting all variab
les 
#graphics.off()                     #close graphics window 

Connect to database and retrieve GPS location data. The following code is specific to each database 
where the GPS data resides, and is set-up for Sierra bighorn sheep.  

 
bhdb<-file.path("bighorn.mdb")            # Identify database 
channel<-odbcConnectAccess(bhdb)            # Open connection 
 
##  AllCollarLocations  ##                  # Pull table from access and modif
y 
##======================## 
acl.raw=sqlFetch(channel,"AllCollarLocations",colnames=F,rownames=F) 
nrow(acl.raw) 

## [1] 1346929 

odbcClose(channel)                    # Close connection 
 
acl=acl.raw[-grep("d",acl.raw$AnimalID,ignore.case=T),] # Remove Desert Sheep 
acl$AnimalID=factor(gsub("S","s",acl$AnimalID))             # Standardizes cap
italization for AnimalID 
nrow(acl) 

## [1] 1337663 

unique(acl$AnimalID) 

##   [1] s191 s210 s211 s213 s225 s226 s231 s236 s241 s243 s246 s251…… 

Enter the animal ID (“ID”) exactly as it appears in the database, the year “YYYY”, the month range 
starting “MM” & ending “MM”. 

ID="s465"                                       ### Enter animal ID ### 
cl<-acl[which(acl$AnimalID==ID),] 
head(cl) 
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## 9            1 20170413 382297.3 4082547 20:00:40 
## 10           1 20170413 382304.8 4082562 22:00:38 
## 11           1 20170414 382306.8 4082555 00:00:38 
## 12           1 20170414 382311.4 4082556 02:00:40 
## 13           1 20170414 382307.2 4082564 04:00:40 
## 14           1 20170414   382315 4082554 06:00:38 
## 15           1 20170414 382324.2 4082573 07:14:27 
## 16           1 20170414 382333.5 4082558 08:00:38 
## 5            2 20170414 382339.3 4082555 10:00:40 
## 6            2 20170414   382337 4082568 12:00:38 
## 71           2 20170414 382343.5 4082548 14:00:37 
## 8            2 20170414 382345.9 4082556 16:00:09 
## 91           2 20170414 382343.2 4082547 18:00:39 
## 101          2 20170414 382320.4 4082559 20:00:39 
## 24           1 20170415 382320.8 4082553 00:00:39 
## 25           1 20170415 382313.1 4082556 02:00:37 
## 26           1 20170415 382313.3 4082555 04:02:45 
## 27           1 20170415 382313.4 4082552 06:00:38 
## 51           5 20170417 382272.9 4082396 10:00:39 
## 83           5 20170417   382239 4082409 16:00:40 
## 94           5 20170417   382248 4082412 18:00:39 
## 104          5 20170417 382247.9 4082406 20:00:40 
## 112          5 20170417 382249.8 4082407 22:00:38 
## 243          4 20170418 382247.9 4082407 00:00:38 
## 253          4 20170418 382242.6 4082404 02:00:40 
## 263          4 20170418   382251 4082404 04:00:38 
## 324          9 20170423 382249.8 4082410 18:00:39 
## 335          9 20170423 382247.4 4082404 20:00:40 
## 346          9 20170423 382250.7 4082406 22:00:40 
## 356          9 20170424 382252.4 4082388 00:00:39 
## 366          9 20170424 382252.6 4082405 02:00:40 
## 99          13 20170515 383946.7 4081704 18:00:39 
## 1010        13 20170515 383945.5 4081689 20:00:39 
## 1112        13 20170515 383953.1 4081695 22:00:38 
## 1210        13 20170516 383951.9 4081695 00:00:39 
## 1310        13 20170516 383944.6 4081692 02:02:39 
## 1411        13 20170516 383947.4 4081689 04:00:40 
## 2210        13 20170516 383955.6 4081680 20:00:39 
## 239         13 20170516 383946.4 4081685 22:00:38 
## 120         14 20170516 383944.6 4081692 02:02:39 
## 230         14 20170516 383947.4 4081689 04:00:40 
## 1011        14 20170516 383955.6 4081680 20:00:39 
## 1113        14 20170516 383946.4 4081685 22:00:38 
## 249         13 20170517 383947.4 4081684 00:00:39 
## 2510        13 20170517 383947.4 4081682 02:01:30 
## 2610        13 20170517 383952.7 4081690 04:00:38 
## 337         13 20170517 383945.7 4081693 20:00:39 
## 348         13 20170517 383930.8 4081690 22:00:14 
## 1211        14 20170517 383947.4 4081684 00:00:39 
## 1311        14 20170517 383947.4 4081682 02:01:30 

For Sierra bighorn sheep, it may also be important to check for spring storms that may cause sheep 
to cluster. This can be easily done using the following link: https://water.weather.gov/precip/ 
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An additional way to estimate if a cluster is a parturition site is to map the locations by writing 
them to a csv or other file of your choice. 

write.csv(cluster.all, "s465_2017parturition.csv") 

 

 

Figure A1. Three GPS clusters identified by a cluster detection algorithm for an adult female 

Sierra Nevada bighorn sheep (s465) in 2017 in the Sierra Nevada of California. Based on post-

identification parturition verification criteria, only one cluster (Inset map) is considered a 

parturition site where the females vaginal implant transmitter was expelled, the other large 

cluster is a post-parturition nursery site where the female and offspring moved to after several 

days in the parturition site, and the smallest cluster is a bedsite that was used for several 

consecutive nights.  
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Figure A1.  
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APPENDIX B. MOUNTAIN LION RESOURCE SELECTION FUNCTION 

 

I developed a spatial model to predict the spatial probability of encountering hunting lions within 

Sierra bighorn sheep home ranges during spring at the third-order scale by developing a used-

available resource selection function (RSF; Hosmer and Lemeshow 2000, Manly et al. 2002, 

Johnson et al. 2006).  Predation risk is comprised of probability of encounter and probability of 

death (Hollings 1959), but perceived risk and subsequent behavior modifications by Sierra 

Nevada Bighorn sheep to avoid risk, may arise from simple encounters of mountain lions 

(Wehausen 1996). Mule deer (Odocoileus hemionus) are the primary prey of mountain lions in 

this region, but mountain lions are opportunistic hunters and are the cause of mortality for 

approximately 53% of all known Sierra bighorn sheep mortalities (California Dept. of Fish and 

Wildlife; CDFW, unpublished data). I quantified the relative probability of encounter risk by 

mountain lions across the Sierra Nevada and Owens Valley.  

The portion of the Sierra Nevada that we studied extends along the Eastern border of 

California extending from Lee Vining, California in the north approximately 200 km south near 

Olancha, California (Hill 1975). Elevation changes abruptly along the Eastern front from 1000 m 

to an average of 3,000 m, with numerous peaks above 4,000 m. The strong rain shadow effect 

limits east of the Sierra crest and most of the annual precipitation falls as snow during winter 

months (November-April). The resulting xeric vegetation communities are separated by 

elevation classes, low-elevation (1500–2499 m) includes scrub with mixed grass and forb types; 

intermediate (2500–3300 m) includes moderate timber cover with sparse forbs and subalpine 

meadows; high elevations (>3300 m) includes sparse alpine vegetation (Hill 1975).   

California Department of Fish and Wildlife crews captured mountain lions by pursuit 

with hounds and fitted them with GPS collars (see Pierce et al. 1998). I programmed collars to 
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collect 6–10 GPS locations per day, with 5–7 locations during crepuscular and overnight hours 

(18:00–6:00) to best capture hunting behaviors.  

I evaluated the relative probability of selection of habitat by mountain lions with a used-

available resource selection function (RSF) within a logistic regression frame-work (Hosmer and 

Lemeshow 2000, Manly et al. 2002, Johnson et al. 2006). I used a 100% kernel density estimator 

(KDE) with 500m buffer (Worton 1989) to delineate available habitat for each mountain lion 

from April 1 –July 30th from all years. I sampled available locations within each individual 

mountain lion’s home range, (Johnson 1980, Boyce 2006) using a 4:1 ratio of stratified random 

available locations to used GPS locations (Northrup et al. 2013).  

I selected landscape attributes known from previous studies to influence mountain lion 

resource selection (Kunkel et al. 2013, Blake and Gese 2016, Justin Delinger, CDFW, 

unpublished data). I calculated topographic variables (slope, elevation, aspect, ruggedness) from 

30m digital elevation models. I refined aspect using a geomorphology package in ArcGIS, such 

that 0 is warm dry aspect (southwest), and 1 is cooler shaded aspect (northeast). I condensed 6 

landcover types (forest, shrub, alpine, desert, riparian, and water) obtained from thematic 

vegetation layers from CalVEG and calculated minimum distance to each for all pixels across the 

study area. I retained candidate variables that were non-confounded and screened for collinearity 

using the Pearson correlation coefficient threshold of |r| < 0.6 (Hosmer and Lemeshow 2000, 

Wickham 2009).  

I considered additive, interactive, and quadratic term candidate models, and used a 

mixed-effects RSF allowing for heterogeneity across individual mountain lions (Gilles et al. 

2006). I used a combination of graphical, Bayesian Information Criteria (BIC) guidelines, and 

ANOVA deviance values to determine the top model (Schwartz 1978, Boyce et al. 2002, 
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Veneables and Ripley 2002, Hooten and Hobbs 2015). I evaluated the predictive performance of 

the top model using k-fold cross-validation (Boyce et. al 2002), using code provided by 

Brzustowski (2005). The predictive capacity of the partitioned model was evaluated against the 

withheld subset of data using Spearman rank correlations (rs) grouped into 10 bins. I externally 

tested the top model using Spearman rank correlations from locations of mountain lion-killed 

sheep not included in model building compared to bins of predicted use. I mapped relative 

probability of use by mountain lions by multiplying the beta coefficients with each 

corresponding landscape attribute layer. I conducted all statistical calculations and graphical 

explorations in Program R 3.3.1 (R Core Team 2016) with packages: ‘adehabitatHR’, 

‘maptools’, ‘rgdal’, ‘sp’, ‘raster’, ‘rgeos’, ‘spatial.tools’ , ‘MuMIn’, ‘MASS’, ‘GGally’, 

‘ggplot2’ and ‘plotrix’, and ARC GIS 10.3.1 (ESRI 2011).  

I collected 20,764 locations from 28 GPS-collared mountain lions that inhabited current 

and historical Sierra bighorn sheep distributions during the spring lamb rearing period (April-

July) from 2002–2011. Mountain lions included eleven males and seventeen females, and eight 

were subadults. Each mountain lion’s collar collected between 2 and 12 fixes per day, most 

averaging 6 per day. Elevation, slope, ruggedness, aspect, and distance to vegetation cover types: 

desert, shrub, riparian, forest, and alpine barren, and distance to streams and seasonal drainages 

were consistently retained in top-ranked models (Table A1). Ruggedness was consistently ranked 

highly, but estimated beta coefficients and predictive mapping appeared incorrect. I determined 

that the method used to obtain ruggedness (Sappington et al. 2003), could provide misleading 

conclusions at the specified resolution. The resulting top model included the following fixed 

effect covariates and mountain lion ID (n=28) as a random effect (Table A2).  
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The mean Spearman rank correlation for the top model showed good model fit (rho=0.98) 

overall, and when partitioned by individual mountain lion (rho= 0.96). External validation from 

mountain lion-killed sheep (n=126) also showed good model fit (0.92). There were four 

mountain lions that the model did a poor job of predicting (rho <.50), two of which were 

subadult males. Individual differences in mountain lion selection accounted for less than 10% of 

model variation (0.07). Probability of mountain lion use was highest for elevations between 

1,500–2,600 m. Probability of use was highest for slopes approximately 10–30° and dropped 

below 10% for slopes > 42°. Probability of use decreased for cooler and more shaded aspects 

(28%). Probability of use increased with increasing distance from alpine landcover types (27%), 

decreased with increasing distance from forest (68%), riparian (55%), shrub (66%), and desert 

(51%) landcover types. Probability of use strongly decreased with increasing distance from water 

(91%). The predictive map developed showed mountain lion use was greater in valley bottoms, 

along water systems and in closed canopy cover types, decreased at elevations above 3,000 m 

and slopes greater than 42 degrees. (Figure A1). The predictive map covering the spring 95% 

MCP home range of female Sierra bighorn sheep in 2016 from the Mt. Langley subpopulation 

showed considerable variation (0.04–0.78%) in probability of use by mountain lions (Figure A2).   

Although I did not explicitly test hypotheses, these results support the assumption that 

mountain lions are primarily using habitat where mule deer are likely to occur (Johnson et al. 

2013) and near closed cover types, where mountain lions have higher chances of ambush hunting 

success (Dickson and Beier 2002). These findings suggest that slopes ≥ 42 degrees represent 

locations with low predation risk and can be designated as safe ‘escape terrain’ for Sierra Nevada 

bighorn.  These results are consistent with my expectations and analogous previous research on 

the habitat use patterns of mountain lions in high desert-alpine regions, yet are specific to 
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mountain lions within the Sierra Nevada region (Pierce et al. 1999, Ernest et al. 2000, 2002, 

Dickson and Beier 2002, Stephenson et al. 2012, Johnson et al. 2013, Blake and Gese 2016). The 

development of this mountain lion RSF and predictive map provides a strong method for 

determining the relative mountain lion predation risk within SNBS habitat across subpopulations.  
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Table B1. Model selection for the top candidate models representing relative probability of use 

by mountain lions in spring, developed from a resource selection function using GPS data from 

28 mountain lions between 2002–2011.  

 

       Model         Ka          BIC  b
     ΔBICc      ωc       LLd 

slope quad+ elev quad +full 13  86413.5         0.00           1     -42511.31 

slope quad +elev +full 12  86508.8      660.14         0   -43188.8 

slope +elev+ rugged +full 12 87842.6    1329.16      0 -43853.3 

slope + elev+full           11 88130.1 1616.68      0 -44002.8 

a k= number of parameters, bΔBIC=difference between the model listed and the BIC of 

the best model cw= model weight based on model BIC compared to all other BIC values, 
dLL=log-likelihood; slope quad= slope + slope2, elev quad= elevation + elevation2, full= 

full model including: aspect, and distance to vegetation cover types (desert, shrub, 

riparian, forest, and alpine barren), and distance to streams and seasonal drainages.  
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Table B2. Standardized regression coefficients and standard errors for the top ranked resource 

selection function model for mountain lion use in the southcentral portion of the Sierra Nevada, 

California, USA during 2002–2011.  

 

Model covariate                           ß-coefficient                   SE 

(intercept) -1.26 0.06 

aspect -0.08 0.03 

elevation -0.39 0.02 

elevation2 -0.36 0.01 

slope     0.41 0.01 

slope2  -0.3 0.01 

riparian -0.59 0.02 

forest -0.39 0.03 

desert -0.67 0.06 

alpine 0.24 0.01 

shrub -0.41 0.03 

water -0.09 0.01 
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Figure B1. Spatial maps cover the Southcentral portion of the Sierra Nevada. The predictive map 

(left) displaying the relative predicted probability of use by mountain lions and was derived from 

a resource selection function including GPS mountain lion data from 2002–2011. This map 

indicates mountain lion use is greater in valley bottoms, lower elevations and low-grade slopes. 

The map on the right displays topographic attributes of the region as well as subpopuilations of 

Sierra Nevada Bighorn sheep for comparison.  

 

Figure B2. Predictive maps displaying the relative predicted probability of use by mountain lions 

derived from a resource selection function using GPS location data from mountain lions in the 

southcentral portion of the Sierra Nevada during 2002–2011. The blue polygon represents the 

95% MCP spring home range of Sierra Nevada bighorn sheep from the Mt. Langley 

subpopulation. There is considerable variation (0.04–0.78%) in probability of use by mountain 

lions within this home range. The map on the right highlights predefined ‘escape terrain’ for 

Sierra Nevada bighorn sheep, where the slope is greater than 42 degrees. The relative probability 

of use by mountain lions in escape terrain is very low.   
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Figure B1.  
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Figure B2.  
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APPENDIX C: PREDICTIVE RESOURCE SELECTION BY SUBPOPULATION 

 

I developed a predictive resource selection funtion to map reource selection by lactating Sierra 

Nevada bighorn sheep (Ovis canadensis sierrae; Sierra bighorn sheep hereafter) in the Sierra 

Nevada of California. This metapopulation currently consists of 14 subpopulations distributed 

along the Sierra Nevada crest. One of the potential factors identified by U.S Fish and Wildlife 

Service (2007) to be limiting recovery includes limited distributions and inadequate connectivity 

among subpopulations. Despite considerable progress towards recovery, demographic variation 

among subpopulations remains a threat to recovery (U.S Fish and Wildlife Service 2007, 

Johnson et al. 2010, Conner et al. 2018).  Inter-population connectivity and recolonization of 

suitable habitat can increase long-term viability for naturally fragmented subpopulations. Sierra 

bighorn sheep are philopatric and slow to naturally recolonize, thus to achieve recovery goals, 

managers are focused on reintroductions into former ranges and augmentation of smaller 

subpopulations (Geist 1971, Few et al. 2015). I used a resources selection function to quantify 

selection of neonatal habitat by lactating Sierra bighorn sheep, and produce the following maps. 

The 14 distinct subpopulations are geographically grouped into metapopulation recovery units 

(Figure C1): Northern  recovery unit {Mt. Warren (Figure C2), Mt. Gibbs (Figure C3) and 

Cathedral Range (Figure C4)}, Central recovery unit {Convict Creek (Figure C5) and Wheeler 

Ridge (Figure C6) Southern recovery unit {Taboose Creek (Figure C7), Sawmill Canyon (Figure 

C8), Mt. Baxter (Figure C9), Bubbs Creek (Figure C10), Mt. Williamson (Figure C11), Mt. 

Langley (Figure C12), and Olancha Peak (Figure C13)}, and Kern recovery unit {Big Arroyo 

(Figure C14) and Laurel Creek (Figure C15)}. There are currently 4 vacant subpopulations that 

have been identified by U.S. Fish and Wildlife for future occupancy; Twin Lakes (Figure C16), 

Green Creek (Figure C17), Coyote Ridge (Figure C18) and Black Divide (Figure C19). The 


